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Abstract—An analysis is performed to study the effect of the buoyancy forces on the flow and heat transfer over a heated vertical or
inclined surface which moves with non-uniform velocity in an ambient fluid. Both the constant wall and constant heat flux conditions
are considered. The coupled non-linear partial differential equations governing the flow are solved using an implicit finite-difference
scheme. It is found that, beyond a certain value of the buoyancy parameter, the skin friction vanishes at certain locations, but it does
not imply separation since we are considering the flow over a moving surface. Also for large buoyancy parameter, the velocity of the
fluid near the wall exceeds that on the wall. The Nusselt number increases with the buoyancy parameter, the Prandtl number and
the stream-wise distance. The Nusselt number for the constant heat flux case is found to be higher than that of the constant wall
temperature case.  2001 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

a constant
Cf coefficient of skin friction
g acceleration due to gravity . . . . . . . m·s−2

Gr Grashoff number
k thermal conductivity . . . . . . . . . . . W·m−2·K−1

L chracteristic length . . . . . . . . . . . . m
Pr Prandtl number
Re Reynolds number
q rate of heat transfer . . . . . . . . . . . . W·m−2

R denotes a dependent variable
T temperature . . . . . . . . . . . . . . . . K
U wall velocity . . . . . . . . . . . . . . . m·s−1

u,v velocity components . . . . . . . . . . . m·s−1

x, y Cartesian coordinates

Greek symbols

α thermal diffusivity . . . . . . . . . . . . m2·s−1

β coefficient of thermal coefficient
θ dimensionless temperature

∗ Correspondence and reprints.

ν kinematic viscosity . . . . . . . . . . . . m2·s−1

ξ, η similarity variables
φ angle of inclination of the surface
Ψ stream function

Subscripts

0 value of a variable at x = 0
∝ value of a variable at infinity
w value of a variable at the wall
x, y partial derivative with respect to x, y

INTRODUCTION

The flow and heat transfer in the boundary layer
induced by a continuous surface moving with uniform or
non-uniform velocity in an ambient fluid are important
in many manufacturing processes in industry such as the
extrusion of a plastic sheet, the cooling of a metallic
plate in a cooling bath and the boundary layer along
material handling conveyers. Glass blowing, continuous
casting and spinning of fibers also involve the flow due to
a stretching surface. Sakiadis [1] was the first to study
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the flow induced by a surface moving with a constant
velocity in an ambient fluid. The corresponding heat
transfer problem was studied theoretically by Tsou et
al. [2], Erickson et al. [3] and experimentally by Griffin
and Throne [4]. Crane [5] considered the same problem
as studied in [1], but assumed that the surface velocity
varies linearly with the stream-wise distance x (U = ax ,
a > 0). Since then several investigators [6–16] studied
various aspects of this problem such as the heat transfer
with uniform or non-uniform wall temperature or heat
flux, mass transfer, suction or blowing, parallel free
stream velocity, and a magnetic field. In all these cases
self-similar solutions were obtained. The assumption of
a linear variation of the wall velocity gives unrealistic
wall velocity at x = 0. Jeng et al. [17] investigated the
non-similar flow where the velocity of the stretching
sheet was taken as U = U0(1 + x/L). The effect of
the buoyancy force on the boundary layer flow over
an inclined surface moving with a constant velocity in
an ambient fluid was considered by Moutsoglou and
Chen [18].

In this paper, we have studied the effect of the buoy-
ancy force due to the thermal diffusion on the flow and
heat transfer over a heated vertical or inclined surface
moving with a non-uniform velocity, U = U0(1 + x/L),
in an otherwise ambient fluid. Both constant wall tem-
perature and constant heat flux conditions are included
in the analysis. The coupled nonlinear partial differential
equations are solved numerically using an implicit finite-
difference scheme similar to that of Blottner [19]. The
results are compared with those of Tsou et al. [2], Erick-
son et al. [3], Griffin and Throne [4], Jeng et al. [17] and
Moutsoglou and Chen [18].

PROBLEM FORMULATION

We consider the laminar steady, incompressible bound-
ary layer on a vertical or an inclined surface moving with
a non-uniform velocity U = U0(1 + x/L) in an ambient
fluid, where U is the wall velocity, U0 is the value of the
U at x = 0, L is the characteristic length and x is the
distance measured from the leading edge (see figure 1).
The buoyancy force acts vertically downwards. The wall
temperature Tw and the ambient temperature T∞ are both
constant. The fluid properties are constant except the den-
sity variation required to drive the buoyancy forces. For
the case of an inclined surface, both the stream-wise pres-
sure gradient term and the buoyancy force term exist, but
they have different magnitudes depending on the angle
of inclination of the plate. The buoyancy induced stream-

Figure 1. Schematic diagram of the physical system.

wise pressure gradient term can be neglected in com-
parison to the buoyancy force term if the condition tan
φ � Re1/2

x /η∞ is satisfied [20], where φ is the angle
of inclination to the vertical, Rex is the local Reynolds
number and η∞ is the edge of the boundary layer. For
boundary layer flows, Rex lies between 103 to 105. For
Rex = 103, η∞ = 10, φ ≤ 45◦ and Rex = 105,η∞ = 10,
φ ≤ 80◦. For a vertical plate φ = 0. Under the above as-
sumptions, the boundary layer equations governing the
flow can be expressed as [12, 17, 18]

ux + vy = 0 (1)

uux + vuy = νuyy + gβ(T − T∞) cosφ (2)

uTx + vTy = αTyy (3)

The boundary conditions are given by

u(x,0)=U(x), v(x,0)= 0

T (x,0)= Tw or Ty(x,0)= −qw/k

u(x,∞)= 0, T (x,∞)= T∞
u(0, y)= 0, T (0, y)= T∞, y > 0. (4)

Here x and y are the distances along and perpendic-
ular to the surface; u and v are the velocity components
along the x and y directions respectively; T is the tem-
perature; g is the gravitational acceleration; β is the volu-
metric coefficient of thermal expansion; α is the thermal
diffusivity; ν is the kinematic viscosity; qw is the rate of
heat transfer at the wall; k is the thermal conductivity;
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the subscripts x and y denote derivatives with respect to
x and y , respectively; and the subscripts w and ∞ denote
conditions at the wall and in the ambient fluid, respec-
tively.

In order to make the equations (1)–(3) dimensionless,
we apply the following transformations

η= (
2ξν

)−1/2
Uy

ξ =
∫ x

0
U(x)dx, ξ = x/L, U =U0(1 + ξ)

Ψ (x, y)= (
2νξ

)1/2
f

(
ξ, η

)
ξ =U0Lξ(1 + ξ/2), u= ∂Ψ/∂y =Uf ′( ξ, η)
v = −∂Ψ/∂x = −(

2ξν
)1/2(

U/2ξ
)

× [
f + 2ξ∂f/∂ξ + (s1 − 1)ηf ′]

θ = (
ξ, η

) = (T − T∞)/(Tw − T∞)

λ= GrL/Re2
L, ReL =U0L/ν

GrL = gβ(Tw − T∞)L3/ν2

Rex =U0x/ν, Pr = ν/α (5)

to equations (1)–(3) for the constant wall temperature
case (CWT) case) we find that (1) is identically satisfied
and (2) and (3) reduce to

f ′′′ + ff ′′ − s1f
′2 + λ cosφs2θ

= s3ξ
(
f ′∂f ′/∂ξ − f ′′∂f/∂ξ

)
(6)

Pr−1θ ′′ + f θ ′ = s3ξ
(
f ′∂θ/∂ξ − θ ′∂f/∂ξ

)
(7)

where

s1 = (
2ξ/U

)
dU/dξ = 2ξ(1 + ξ/2)(1 + ξ)−2

s2 = (
2ξ/U0L

)
/(U/U0)

2 = 2ξ(1 + ξ/2)(1 + ξ)−3

s3 = (
2ξ/UL

) = 2(1 + ξ/2)(1 + ξ)−1.

(8)

The boundary conditions for the CWT case are given by:

f (ξ,0)= 0, f ′(ξ,0)= θ(ξ,0)= 1
f ′(ξ,0)= θ(ξ,∞)= 0.

(9)

The corresponding equations for the constant heat flux
case (CHF case) are given by:

f ′′′ + ff ′′ − s1f
′2 + λ∗ cosφs4θ

= s3ξ
(
f ′∂f ′/∂ξ − f ′′∂f/∂ξ

)
(10)

Pr−1θ ′′ + f θ ′ − s5f
′θ = s3ξ

(
f ′∂θ/∂ξ − θ ′∂f/∂ξ

)
(11)

where

T − T∞ = (qw/k)
(
2ξν

)1/2
U−1θ

(
ξ, η

)
λ∗ = Gr∗

L/Re5/2
L

Gr∗
L = gβqwL

4
(
kν2

)
s4 = (

2ξ/U0L
)3/2

(U/U0)
−4

= [
2ξ(1 + ξ/2)3/2(1 + ξ)−4

]
s5 = (U/U0)

−2 = (1 + ξ)−2.

(12)

The boundary conditions for the CHF case are given by

f (ξ,0)= 0, f ′(ξ,0)= 1,
θ ′(ξ,0)= −1, f ′(ξ,∞)= θ(ξ,∞)= 0.

(13)

Here ξ and η are the transformed coordinates; ξ is
the dimensionless distance along the surface, ψ and f
are the dimensional and dimensionless stream functions,
respectively; θ is the dimensionless temperature; GrL and
Gr∗

L are the Grashof numbers for the CWT and CHF
cases, respectively; λ and λ∗ are the buoyancy parameters
for the CWT and CHF cases, respectively; ReL is the
Reynolds number; Pr is the Prandtl number; s1, s2, s3,
s4 and s5 are functions of ξ ; and prime denotes derivative
with respect to η.

It may be noted that for the CWT case equations (6)
and (7) for λ = 0 (without buoyancy force) and ξ = 0
(self-similar flow) reduce t0 those of Tsou et al. [2],
Erickson et al. [3] and Griffin and Throne [4], if we apply
the transformation.

η1 = 21/2η, f1(η1)= 21/2f (η),

θ1(η1)= θ(η).
(14)

Also for λ = 0, equations (6) and (7) for the CWT case
reduce to those of Jeng et al. [17]. Further the U = U0,
equations (6) and (7) as well as (10) and (11) reduce to
those of Moutsoglou and Chen [18] if we put s1 = 0,
s2 = s4 = 2ξ , s3 = 2, s5 = 1 and use the transforma-
tions (14).

The local skin friction coefficientCfx is expressed as

Cfx = −2µ(∂u/∂y)y=0/ρU
2

= −21/2Re−1/2
x (1 + ξ/2)−1/2f ′′(ξ,0). (15a)

The local Nusselt number Nux for the CWT case is given
in the form

Nux = −x(∂T /∂y)y=0/(Tw − T∞)

= −21/2Re1/2
x (1 + ξ)(1 + ξ/2)−1/2θ ′(ξ,0). (15b)
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Similarly, for the CHF case, the local Nusselt number is
given by:

Nux = −21/2Re1/2
x (1 + ξ/2)−1/2(1 + ξ)/θ(ξ,0) (15c)

where µ is the coefficient of dynamic viscosity.

NUMERICAL METHOD

The coupled nonlinear partial differential equations (6)
and (7) under the boundary conditions (9) have been
solved by using an implicit, iterative tri-diagonal finite-
difference scheme similar to that of Blottner [19]. All the
first-order derivatives with respect to ξ are replaced by
two-point backward difference formulae of the form

(∂R/∂ξ)n,m+1 = (Rn,m+1 −Rn,m)/&ξ (16a)

Rn,m =R(ηn, ξm), ηn = (n− 1)&η,
n= 1,2, . . . ,N

η∞ = ηN, ξm =m&ξ, m= 0,1,2, . . .

(16b)

whereR denotes the dependent variable f or θ andm and
n the node locations along the ξ and η directions, respec-
tively. First, the third-order equation (6) is converted to
second-order equation by substituting f ′ = F . Then the
second-order derivatives in η direction for F and θ are
discretized using three-point central-difference formulae
while the first-order derivatives are discretized by em-
ploying the trapezoidal rule. At each line of constant ξ ,
a system of algebraic equations is obtained. The nonlin-
ear terms are evaluated at the previous iteration.

The system of linear algebraic equations can be
written using matrix notation as


An 
ωn−1 + 
Bn 
ωn+ 
Cn 
ωn+1 = 
Dn, n= 2,3, . . . ,N − 1
(17a)

where the vectors and the coefficient matrices are given
by


ωn =
[
F

θ

]
n,m+1

, 
An =
[
A11 0

0 A22

]
n,m


Bn =
[
B11 B12

0 B22

]
n,m

, 
Cn =
[
C11 0
0 C22

]
n,m
DT

n = (D1,D2)n,m, 
ωT
1 = (1,1), 
ωT

N = (0,0).
(17b)

An algorithm that can be used to obtain the solution

ωn at a certain stream-wise distance ξ , i.e., for a particu-
lar value of m is [21]


ωn = − 
En 
ωn+1 + 
Jn, 1 ≤ n≤N − 1 (18a)

where



En = ( 
Bn − 
An 
En−1
)−1 
Cn


Jn = ( 
Bn − 
An 
En−1
)−1( 
Dn − 
An 
Jn−1

)
2 ≤ n≤N − 1

(18b)

and


E1 = 
EN =
[

0 0
0 0

]
, 
J1 =

[
1
1

]
, 
JN =

[
0
0

]
.

(18c)

Knowing the values of the dependent variables and
appropriate derivatives atm, corresponding to distance ξ ,
the dependent variables 
ωn atm+1, which correspond to
distance ξ +&ξ can be computed by using the following
procedure. First, the values of the matrix elements A11,
B11 etc. are evaluated using the known values of the
required variables at m. Next, with the help of (18b)
and (18c), the 
En and 
Jn based on the values of the
variables at m are calculated for all n between 1 and N ,
starting at the wall (n = 1) and values of 
En and 
Jn
in (18a) and using the boundary conditions (18c), the
values of the dependent variables 
ωn at m + 1 are
determined in the reverse order, i.e., starting from n=N .
New values of f at m+ 1 are obtained from

fn,m+1 =
∫ η

0
Fn,m+1 dη. (19)

The process of improving 
ωn at m+ 1 is repeated till the
following convergence criterion is satisfied

max

[∣∣∣∣
(
∂F

∂η

)j+1

η=0
−

(
∂F

∂η

)j
η=0

∣∣∣∣,
∣∣∣∣
(
∂θ

∂η

)j+1

η=0
−

(
∂θ

∂η

)j
η=0

∣∣∣∣
]
< 10−4 (20)

where the superscripts j + 1 and j denote the values for
the current and previous iterations.

However, to start the solutions, the values of ωn and f
at ξ = 0 have to be calculated by solving the self-similar
equations obtained by putting ξ = 0 in (6) and (7) under
the boundary conditions (9) by a method analogous to
that described above. To initiate the computation, initial
profiles are chosen satisfying the boundary conditions (9)
and these are given by

F = θ = 1 − (η/η∞), f = η− (
η2/2η∞

)
. (21)

In a similar manner, equations (10) and (11) under
boundary conditions (13) corresponding to the CHF case
are also solved.
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RESULTS AND DISCUSSION

Equations (6) and (7) under the conditions (9) and
equations (10) and (11) under the conditions (13) have
been solved numerically using the method described in
the previous section. In order to assess the accuracy of
our method, we have compared the velocity profile u/U0
for ξ = λ= s1 = 0 with the theoretical and experimental
results of Tsou et al. [2] in figure 2. The velocity pro-
file is in very good agreement with the theoretical values.
It also agrees well with the experimental values near the
wall. Also we have compared the local Nusselt number
Nux for ξ = λ = s1 = 0 with the theoretical values of
Erickson et al. [3] and with the experimental values of
Griffin and Throne [4]. For direct comparison, we have
to divide our results by 21/2. The results are found to be
in good agreement with the theoretical and experimen-
tal results when the wall velocity U0 ≥ 8.92 ft·sec−1.
The comparison is presented in figure 3. Further we
have compared the surface shear stress, f ′′(ξ,0), and
the surface heat transfer, −θ ′(ξ,0) values for s1 = 0,
s2 = s4 = 2ξ , s3 = 2, s5 = 1 with those of Moutsoglou
and Chen [18]. For direct comparison we have to divide
our results by 21/2. The results are in excellent agree-
ment. For the sake of brevity, the comparison is presented
only for the case of constant wall temperature (CWT
case) in table I.

The justification for dividing our results by 21/2 is
that our equations (6) and (7) are slightly different from
those of [3, 4, 18] due to scaling effect. However, (6)
and (7) could be reduced to their equations if we use
the transformations given in equation (14). From (14) it
is evident that the surface shear stress and heat transfer,

Figure 2. Comparison of the velocity profile u/U0 for ξ = λ=
s1 = 0 with the theoretical and experimental results of the Tsou
et al. [2].

∂2f

∂η2 (ξ,0) and − ∂θ
∂η
(ξ,0) are related to their results

∂2f

∂η2
(ξ,0)= 21/2 ∂

2f1

∂η2
1

(ξ,0)

∂θ

∂η
(ξ,0)= 21/2 ∂θ1

∂η1
(ξ,0).

(22)

Figure 3. Comparison of the local Nusselt number, Nux , for
ξ = λ = s1 = 0 with that of Erickson et al. [3] and Griffin and
Throne [4].

TABLE I
Comparison of the surface shear stress, f ′′(ξ,0) and the
surface heat transfer −θ ′(ξ,0), for the CWT case when
s1 = 0, s2 = 2ξ , s3 = 2 with those of Moutsoglou and

Chen [18].

Present results Moutsoglou and Chen [18]

Pr ξ f ′′(ξ,0) −θ ′(ξ,0) f ′′(ξ,0) −θ ′(ξ,0)
0.7 0 −0.44372 0.34922 −0.44375 0.34924
0.7 0.5 −0.10556 0.41317 −0.10558 0.41320
0.7 1.0 0.19423 0.45502 0.19425 0.45505
0.7 1.5 0.47217 0.47761 0.47214 0.47764
0.7 2.0 0.73556 0.50035 0.73552 0.50031
0.7 3.0 1.23107 0.53685 1.23103 0.53681
0.7 4.0 1.69657 0.56613 1.69652 0.56609
0.7 5.0 2.13993 0.59090 2.13988 0.59086
7.0 0 −0.44372 1.38698 −0.44375 1.38703
7.0 0.5 −0.28373 1.41317 −0.28376 1.41322
7.0 1.0 −0.12874 1.43706 −0.12876 1.43712
7.0 1.5 0.02107 1.45932 0.02105 1.45938
7.0 2.0 0.16883 1.48032 0.16880 1.48026
7.0 3.0 0.45321 1.53647 0.45318 1.53641
7.0 4.0 0.72694 1.55340 0.72697 1.55334
7.0 5.0 0.99207 1.58517 0.99201 1.58510
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Figure 4. Comparison of the local skin friction coefficient,
Re1/2

x Cfx , and the local Nusselt number, Re−1/2
x Nux for λ= 0 with

those of Jeng et al. [17].

Figure 5. Effect of the buoyancy parameter, λ, on the local skin
friction coefficient, Re1/2

x Cfx , for the CWT and CHF cases.

Also, for he CWT case, the skin friction coefficient,
Re1/2
x Cfx , and the Nusselt number, 2Re−1/2

x Nux , for
λ = 0 are compared with those of Jeng et al. [17]. The
results are found to be in very good agreement. The
comparison is shown in figure 4.

For the CWT and CHF cases the effect of the buoy-
ancy parameter, λ, on the local skin friction coefficient,
Re1/2
x Cfx , and the local Nusselt number, Re−1/2

x Nux for
0 ≤ ξ ≤ 2, Pr = 0.7 is shown in figures 5 and 6, respec-
tively. The skin friction coefficient strongly depends on
the buoyancy parameter λ for ξ > 0, because λ explic-
itly occurs in the momentum equation (see equation (6)).
The skin friction coefficient changes sign for λ≥ 5 at cer-
tain ξ locations. For λ = 5, Pr = 0.7, it changes sign at

Figure 6. Effect of the buoyancy parameter, λ, on the local
Nusselt number, Re−1/2

x Nux , for the CWT and CHF cases.

ξ = 0.291 and ξ = 1.64 for the CWT case and ξ = 0.67
and ξ = 2.13 for the CHF case. The vanishing of the
skin friction at the surface does not imply separation
since we are considering a moving wall problem [22].
The effect of λ on the skin friction coefficient and the
Nusselt number for the CHF case is quantitatively sim-
ilar to that of the CWT case. Hence, it is not discussed
here. However, the Nusselt number for the CHF case is
more than that of the CWT, but the skin friction coef-
ficient for the CHF case is less or greater than that of
the CWT case when ξ < ξ0. For a surface moving in
an ambient fluid, the gradient of the velocity on the sur-
face f ′′(ξ,0) < 0 and for λ = 5 it becomes positive in
the range 0.291< ξ < 1.64 when Pr = 0.7. Similar trend
has been observed by Moutosoglou and Chen [18] when
the wall velocity is uniform. For ξ = 2, Pr = 0.7, the lo-
cal skin friction coefficient changes (reduces) by about
9 times its value at λ = 0 as λ increases from zero to 5.
The reason for this reduction with increasing λ is that the
positive buoyancy parameter acts like a favorable pres-
sure gradient which accelerates the fluid in the bound-
ary layer. Consequently, the relative velocity between the
wall and the fluid decreases as λ increases. The Nusselt
number, Re−1/2

x Nux , increases with the buoyancy para-
meter λ for ξ > 0 and the effect of λ becomes more pro-
nounced with increasing ξ . The reason for this trend is
that the buoyancy parameter (λ > 0) accelerates the fluid
in the boundary layer (as mentioned earlier) which results
in thinner thermal boundary layer. This in turn increases
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Figure 7. Effect of the Prandtl number, Pr, on the local skin
friction coefficient, Re1/2

x Cfx and the local Nusselt number,
Re−1/2

x Nux for the CWT case.

the Nusselt number as λ increases. Since λ is multiplied
by s2(ξ) ≥ 0 (see equations (6) and (8)), there is no ef-
fect of λ at ξ = 0, since s2(ξ) = 0 at ξ = 0, but it in-
creases with ξ . For ξ = 2, Pr = 0.7, the Nusselt number
increases by about 46% as λ increases from zero to 5. The
reason for comparatively weaker dependence of the Nus-
selt number on λ is that the buoyancy parameter does not
occur explicitly in the energy equation (see equation (7)).

Figure 7 presents the effect of the Prandtl number Pr
on the skin friction (Re1/2

x Cfx) and the Nusselt number
(Re−1/2

x Nux) for λ= 3, 0 ≤ ξ ≤ 2 and for the CWT case.
Since an increase in the Prandtl number reduces both the
momentum and thermal boundary layers, the skin friction
and the Nusselt number increase with Pr. For ξ = 2,
λ= 3, the skin friction and the Nusselt number increase,
respectively, by about 120% and 438% as Pr increases
from 0.7 to 15.

The effect of the buoyancy parameter λ on the velocity
and temperature profiles (f ′(ξ, η), θ(ξ, η)) for ξ = 1,
Pr = 0.7 and for the CWT case is displayed in figure 8.
As mentioned earlier, the positive buoyancy force acts
like a favorable pressure gradient and hence accelerates
the fluid in the boundary layer. This results in higher
velocity as λ increases. For λ = 5, the velocity of the
fluid near the wall is more than that on the wall. Since
thermal boundary layer is also reduced with increasing λ,
the temperature is lowered.

In figure 9 the effect of the Prandtl number Pr on
the velocity and temperature profiles (f ′(ξ, η), θ(ξ, η))

Figure 8. Effect of the buoyancy parameter, λ, on the velocity
and temperature profiles, f ′(ξ, η) and θ(ξ, η), for the CWT
case.

Figure 9. Effect of the Prandtl number, Pr, on the velocity and
temperature profiles, f ′(ξ, η) and θ(ξ, η), for the CWT case.

for the CWT case when λ = 3, ξ = 1 is presented.
Since the increase in the Prandtl number reduces both the
momentum and thermal boundary layers, the velocity and
temperature profiles decrease with increasing Pr. Also
for large Pr the thermal boundary layer is much thinner
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Figure 10. Effect of the buoyancy parameter, λ, on the velocity
and temperature profiles, f ′(ξ, η) and θ(ξ, η), for the CHF case.

than the momentum boundary layer, because the effect of
Pr is more pronounced on the temperature profiles than
on the velocity profiles. This is due to the fact that Pr
occurs explicitly in the energy equation.

For the CHF case, the effect of the buoyancy parame-
ter λ on the velocity and temperature profiles (f ′(ξ, η),
θ(ξ, η)) for Pr = 0.7, ξ = 1 is displayed in figure 10. It
is observed that the temperature at and near the wall is
higher than that of the CWT case. Since the velocity pro-
files are qualitatively similar to those of the CWT case,
the discussion is not presented here.

The effect of the Prandtl number Pr on the velocity
and temperature profiles f ′(ξ, η), θ(ξ, η), for the CHF
case when λ = 3, ξ = 1 is shown in figure 11. The tem-
perature at and near the wall changes very significantly
unlike the CWT case where the change is small. The
velocity profiles are qualitatively similar to those of the
CWT case.

The effect of the inclination angle of the plate from
the vertical, φ, on the skin friction and heat transfer,
Re1/2
x Cfx , Re−1/2

x Nux for λ = 3, Pr = 0.7 are presented
in figure 12. For ξ > 0, the effect of φ is more pronounced
on the skin friction coefficient than on the Nusselt
number, because φ occurs explicitly in the momentum
equation. The skin friction coefficient increases with φ,
but the Nusselt number decreases.

Figure 11. Effect of the Prandtl number, Pr, on the velocity and
temperature profiles, f ′(ξ, η), θ(ξ, η), for the CHF case.

Figure 12. Effect of the inclination of the plate to the vertical,
φ, on the local skin friction coefficient and Nusselt number,
Re1/2

x Cfx and Re−1/2
x Nux , for the CWT case.

CONCLUSIONS

It is evident from the results that the Nusselt number
increases with the buoyancy force, the Prandtl number
and the stream-wise distance. The skin friction increases
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with the Prandtl number, but decreases with increasing
buoyancy force. For buoyancy force greater than a certain
value, the skin friction vanishes at certain locations
downstream of the leading edge of the surface and it
is positive in a certain range of stream-wise distance.
However, it does not imply separation. Beyond a certain
value of the buoyancy force the velocity of the fluid
near the wall is more than that on the wall. The Nusselt
number for the constant heat flux case is more than that
of the constant wall temperature case. For large Prandtl
number, the thermal boundary layer is much thinner than
the momentum boundary layer.
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